Artificial bacterial flagella: Fabrication and magnetic control
نویسندگان
چکیده
Inspired by the natural design of bacterial flagella, we report artificial bacterial flagella ABF that have a comparable shape and size to their organic counterparts and can swim in a controllable fashion using weak applied magnetic fields. The helical swimmer consists of a helical tail resembling the dimensions of a natural flagellum and a thin soft-magnetic “head” on one end. The swimming locomotion of ABF is precisely controlled by three orthogonal electromagnetic coil pairs. Microsphere manipulation is performed, and the thrust force generated by an ABF is analyzed. ABF swimmers represent the first demonstration of microscopic artificial swimmers that use helical propulsion. Self-propelled devices such as these are of interest in fundamental research and for biomedical applications. © 2009 American Institute of Physics. DOI: 10.1063/1.3079655
منابع مشابه
Characterizing the swimming properties of artificial bacterial flagella.
Artificial bacterial flagella (ABFs) consist of helical tails resembling natural flagella fabricated by the self-scrolling of helical nanobelts and soft-magnetic heads composed of Cr/Ni/Au stacked thin films. ABFs are controlled wirelessly using a low-strength rotating magnetic field. Self-propelled devices such as these are of interest for in vitro and in vivo biomedical applications. Swimming...
متن کاملThe LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control.
Flagellar length is tightly regulated in the biflagellate alga Chlamydomonas reinhardtii. Several genes required for control of flagellar length have been identified, including LF1, a gene required to assemble normal-length flagella. The lf1 mutation causes cells to assemble extra-long flagella and to regenerate flagella very slowly after amputation. Here we describe the positional cloning and ...
متن کاملFabrication of tunable silica-mineralized nanotubes using flagella as bio-templates.
Bacterial flagella are particularly attractive bio-templates for nanotubes due to their tubular structures and small inner and outer diameters. In this work, flagella isolated from Salmonella typhimurium were used as templates for silica-mineralized nanotubes. The process involved pretreatment of flagella with aminopropyltriethoxysilane (APTES), followed by the addition of tetraethoxysilane (T...
متن کاملDesign and Fabrication of Ultralight High-Voltage Power Circuits for Flapping-Wing Robotic Insects
Flapping-wing robotic insects are small, highly maneuverable flying robots inspired by biologicalinsects and useful for a wide range of tasks, including exploration, environmental monitoring, searchand rescue, and surveillance. Recently, robotic insects driven by piezoelectric actuators have achievedthe important goal of taking off with external power; however, fully autonomous operation requir...
متن کاملNumerical modelling of chirality-induced bi-directional swimming of artificial flagella.
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chir...
متن کامل